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ABSTRACT

Semi-supervised multi-label video action detection aims to locate
all the persons and recognize their multiple action labels by leverag-
ing both labeled and unlabeled videos. Compared to the single-label
scenario, semi-supervised learning in multi-label video action de-
tection is more challenging due to two significant issues: generation
of multiple pseudo labels and class-imbalanced data distribution.
In this paper, we propose an effective semi-supervised learning
method to tackle these challenges. Firstly, to make full use of the (a) Left: bend/bow, take a photo, hold (an ob- ~ (b) Left: stand, read, listen to;
informative unlabeled data for better training, we design an effec- ject); Right: bend/bow, watch Right: stand, talk to

tive multiple pseudo labeling strategy by setting dynamic learn-
able threshold for each class. Secondly, to handle the long-tailed
distribution for each class, we propose the unlabeled class balanc-
ing strategy. We select training samples according to the multiple
pseudo labels generated during the training iteration, instead of
the usual data re-sampling that requires label information before
training. Then the balanced re-weighting is leveraged to mitigate 1 INTRODUCTION

the class imbalance caused by multi-label co-occurrence. Extensive Video action detection aims to detect the bounding boxes for all
experiments conducted on two challenging benchmarks, AVA and the persons in an input video and estimate their action labels. The
UCF101-24, demonstrate the effectiveness of our proposed designs. training process of fully-supervised action detection methods [12,
By using the unlabeled data effectively, our method achieves the 18, 20, 29, 35, 39] relies on a large amount of manually annotated
state-of-the-art performance in video action detection on both AVA training data and thus the performance of the model depends on the
and UCF101-24 datasets. Besides, it can still achieve competitive quality and quantity of annotations. However, it is time-consuming
performance compared with fully-supervised methods when using and cost-intensive to obtain large datasets for video action detection

Figure 1: Action instances with multiple action labels
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limited annotations on AVA dataset. like AVA [14] and AVA-Kinetics [24], as spatio-temporal annotation
is required on each clip of the whole video.

CCS CONCEPTS Hence, it is noteworthy that the numerous unlabeled videos con-

» Computing methodologies — Activity recognition and under- taining human actions in real life can promote the training of action

standing. detection models. Compared with fully-supervised methods that
relies entirely on labeled data, the semi-supervised method can take

KEYWORDS full advantage of both labeled and unlabeled videos and boost the

performance of action detectors. Furthermore, the fully-supervised
action detection approaches will suffer performance degradation
when the amount of labeled data is limited, while semi-supervised

ACM Reference Format: action detection can still achieve competitive performance by lever-
Hongcheng Zhang, Xu Zhao, and Dongqi Wang. 2022. Semi-supervised aging the unlabeled data effectively.

Learning for Multi-label Video Action Detection. In Proceedings of the 30th In action detection task, as shown in Fig.1, the action instance (ac-

ACM International Conference on Multimedia (MM °22), Oct. 10-14, 2022, . .

f ( ) tor) in a short clip from labeled dataset (such as AVA) or unlabeled
real-world videos rarely belongs to a single action category but is
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both the labeled and unlabeled videos. These two problems are usu-
ally coupled together, which bring difficulties to semi-supervised
multi-label video action detection.

For the first problem, semi-supervised multi-label action detec-
tion requires the generation of multiple pseudo labels for the un-
labeled data. However, simply pursuing high pseudo-label quality
by setting fixed high thresholds for all classes like methods [2, 3,
33, 41, 42, 46] in semi-supervised image classification will be detri-
mental to the performance. Because the minority classes tend to
have lower prediction scores due to the insufficient feature learning
caused by the class imbalance issue, while the prediction scores of
majority classes are higher. If a high threshold is set for all classes,
the generated pseudo labels will be inclined to the majority, which
will exacerbate the problem of class imbalance. Inspired by Flex-
match [46], we propose the multiple pseudo labeling method, which
generates multiple pseudo labels by setting dynamic thresholds ac-
cording to the class distributions. This method increases the number
of positive samples for minority classes and thus can leverage more
informative unlabeled data for the training.

For the second problem, the class-imbalanced data distribution
is common in action videos. For example, actions such as stand
and walk appear more frequently in both the dataset and real-
world videos, while actions such as fall down and hit appear with
lower frequency, as shown in Fig.3. Both labeled and unlabeled
videos suffer from the class imbalance issue, which makes the action
classifier bias towards the majority categories during the training.
And the skewed pseudo labels generated from the classifier will
be detrimental to semi-supervised learning process. In addition,
the impact of multi-label should be considered when performing
the class-balanced strategy. It is inappropriate to directly adopt the
class-balanced data re-sampling method used by [15, 19, 40, 47],
because it requires category information in advance, which is not
available for unlabeled videos. And the pseudo labels for unlabeled
data should be generated before the training iteration, which will
lead to low quality of pseudo labels and bring additional cost. To
address the imbalance issue, we propose a class-balanced method
for unlabeled data, named as unlabeled class balancing.

We demonstrate the effectiveness of our method with exten-
sive experiments on AVA [14] and UCF101-24 [34] datasets. Our
semi-supervised learning method outperforms the fully-supervised
methods by using the labeled and unlabeled data effectively. Be-
sides, with limited annotations, our method can achieve competitive
performance when compared with fully-supervised methods with
100% annotations. Our contributions are summarized as follows.

o For multiple pseudo label generation, we propose the multi-
ple pseudo labeling strategy by setting dynamic threshold for
each class, which can leverage more informative unlabeled
data for better training.

To tackle the class imbalance issue, we propose unlabeled
class balancing. It first samples the unlabeled data during the
training iteration instead of the usual data re-sampling, and
then perform balanced re-weighting to mitigate the class
imbalance caused by multi-label co-occurrence.
Experiments conducted on AVA and UCF101-24 datasets
demonstrate the effectiveness of our designs. Our method
outperforms the fully-supervised action detection methods
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and can still achieve competitive performance with limited
annotations. And to the best of our knowledge, this is the
first attempt on semi-supervised learning in the task of multi-
label video action detection.

2 RELATED WORK

2.1 Video Action Detection

Video action detection [8, 12, 18, 20, 25, 29, 35, 38, 39] has evolved
rapidly in recent years, due to the development of convolutional
neural networks and available high-quality datasets. Datasets (such
as AVA and AVA-Kinetics) are annotated with atomic actions for all
action instances in the video. The action instances are annotated
both spatially and temporally and are usually associated with multi-
ple action labels. Typical action detection methods [12, 29, 35, 38, 39]
extended object detectors on 3D-CNN features to handle videos. The
bounding boxes of action instances were first predicted by person
detector and then labeled with some action classes. Recently, several
approaches [26, 28, 29, 35, 38, 39] focused on leveraging context
information and modeling the relations between actors to improve
recognizing human action. In this work, following [12, 29, 35, 38, 39],
we leverage a person detector to generate the bounding boxes, and
utilize the SlowFast [12] as our action detection network.

2.2 Class-imbalanced learning

For the multi-label action detection task, the class-imbalanced dis-
tribution of data is common in both labeled and unlabeled videos,
which poses an great challenge to this task. Most existing ap-
proaches for class-imbalanced learning can be divided into two
categories: re-sampling [4, 5, 10, 31] and re-weighting [6, 10, 17, 37].
In the category of re-sampling, under-sampling the majority classes
[4, 5,31] and over-sampling the minority classes [4, 10] are two gen-
eral strategies. For re-weighting, some researchers set the weight to
be inversely proportional to the class frequency [6, 10, 17, 37]. As for
the class-imbalanced learning on multi-label classification, [40] first
performs re-sampling on the dataset, and then uses re-weighting
to handle the imbalance caused by multi-label co-occurrence.

2.3 Semi-Supervised learning

Semi-supervised learning (SSL) has attracted increasing attention in
recent years due to its superiority in utilizing both labeled and unla-
beled data. There are two powerful techniques for semi-supervised
learning, consistency regularization [1, 22, 36] and pseudo labeling
[23, 41, 42]. FixMatch [33] achieved competitive performance by
combining these techniques with weak and strong data augmenta-
tions and using cross-entropy loss for consistency regularization.
Flexmatch [46] pointed out that, it is not optimal to generate pseudo
labels from unlabeled data by setting fixed threshold, which limits
the performance of FixMatch and other pseudo-label methods. For
semi-supervised video action detection, [21] trains the network
with consistency-based regularization. However, this method is
only applicable to those simple videos which merely contain single
action label, and is not suitable for handling the scene with mul-
tiple actions in videos. Thus, in this work, we aim at tackling this
problem. To the best of our knowledge, this is the first attempt to
perform semi-supervised learning on action detection task in the
multi-label scenario.
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Figure 2: An overview of our proposed method. It contains a student network and a teacher network, where the teacher is
momentum-updated with the student. Given an unlabeled video clip, we first use the teacher model to make a prediction and
generate the multiple pseudo labels by setting dynamic thresholds for each class. Then to handle the class imbalance issue, we
perform unlabeled class balancing. With sample mask generated from multiple pseudo labels, we select action instances from
student’s prediction to compute L, via a balanced re-weighting BCE loss.

3 METHOD
3.1 Overall Pipeline

Spatio-temporal action detection aims to locate all persons in the
input video clip and predict their action labels. Following the typical
action detection framework [29, 35, 38, 39], we leverage an off-
the-shelf person detector to obtain Ng¢; detection boxes on the
key frame (center frame) from the input clip. Then, based on the
detected boxes and the input clip of T frames x € RT3*HXW the
action model produces spatio-temporal features and outputs the
final action predictions pred € RNactXC wwhere C, H, W are class
numbers, height and width respectively. We denote the number of
training samples containing class j from both labeled and unlabeled
Jj
B

data as n/, n),, respectively. Without loss of generality, we assume

that the classes are sorted in descending order, i.e., n! > n® > ... >
n€ for both labeled and unlabeled data.

Given a labeled video clip dataset X; = {(x;, yl")}ﬁ\i’1 and unla-
fi“l, where yli denotes the action
labels for the video clip xli, we want to train the action detection
model by utilizing both the labeled and unlabeled data. Our method
follows the typical semi-supervised framework [2, 3, 33, 46] with a
teacher model f; () and a student model f;(-) with the same archi-
tecture. Receiving the unlabeled input clip with weak augmentation,
the teacher model makes the prediction pred; = f;(Aug.(xy)).
While the student model makes the predictions from both the la-
beled input clip with weak augmentation and the unlabeled input
clip with strong augmentation, as shown in Eq.(1).

pred = fi(Augn,(x)))
prEdg = fs(Augs(xy))

Then the student model is trained by the BCE (binary cross entropy)
loss applied on both the labeled clips and the unlabeled clips with

beled video clip dataset X, = {x},

1
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pseudo action labels. And the weights of teacher model is an ex-
ponential moving average (EMA) of the student model’s weights.
However, different from the semi-supervised methods in image
classification [2, 3, 33, 46], semi-supervised action detection mainly
faces two problems in multi-label scenario, generation of multiple
pseudo labels and class-imbalanced data distribution.

The first is the generation of pseudo labels. Unlike the semi-
supervised learning methods [21, 33, 46] in single-label scenario,
we need to generate multiple pseudo labels from the teacher model’s
prediction for multi-label action detection. Most semi-supervised
methods [2, 3, 21, 33] determine the pseudo label by setting a fixed
threshold for all categories, which we believe is not optimal. Because
this setting takes neither the learning status of each class nor the
class-imbalanced data distribution into consideration. Therefore,
we propose a pseudo-label generation method based on the multi-
label scenario, as described in Sec 3.2. It generates multiple pseudo
labels by setting learnable thresholds which can be dynamically
adjusted for each class during the training iteration.

Secondly, the detection performance is also hindered by the
class-imbalanced distribution, which exists in both labeled and un-
labeled datasets, as shown in Fig.3. The class imbalance issue will
make the model biased towards the majority classes and limit the
performance of the minority classes. This phenomenon becomes
severe when we perform semi-supervised learning on action detec-
tion, because the biased teacher model pre-trained from imbalanced
data will produce skewed action predictions on the unlabeled input
clips. And the pseudo labels generated from the teacher model will
suffer a more imbalanced distribution, thus undermining the per-
formance of semi-supervised learning. However, the class balanced
methods [15, 40, 45] will encounter difficulties when performing
data re-sampling with unlabeled data. Since data re-sampling re-
quires the class information for all unlabeled data before training,
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an additional inference process is required to generate the corre-
sponding pseudo labels for the unlabeled data. This process will
lead to inaccurate pseudo labels and additional cost.

To tackle these problems, we propose an unlabeled class bal-
ancing strategy, which avoids to generate labels for all unlabeled
data in advance. It firstly generates an instance level mask obeying
Bernoulli distribution to perform instance level sampling during
the training iteration instead of data re-sampling. And then we per-
form balanced weighting to alleviate the imbalance effect caused by
multi-label co-occurrence. The overview of our method is shown
in Fig.2, and we will elaborate the details in the following sections.

3.2 Multiple pseudo labeling

Many methods [2, 3, 33, 41] determine the category of pseudo labels
by simply taking the argmax of softmax probabilities. However, in
the scenario of multi-label action detection, one action instance is
usually associated with several action categories, which makes the
generation of pseudo labels challenging. Our target is to generate
multiple pseudo labels 1, € {0, 1}NaetXC by the sigmoid prediction
pred; € RNaetXC from the teacher model classification head for
each class. An intuitive design for generating multiple pseudo label
is to set a threshold to select the highly confident predictions as
positives and those below the threshold as negatives. However, this
design is not conducive to the model’s feature learning, because
some positive predictions below the threshold may be mistakenly
regarded as negatives. Therefore, we contend that thresholds should
be set for both positives and negatives, as shown in Eq.(2). If the pre-
diction score from the i-th action instance and j-th class is greater
than Tlfas, it will be regarded as positive, where i = 1,2, ..., Ng¢r
and j = 1,2,..., C. Otherwise it will be regarded as negative if the
score is less than T,{eg. We believe the rest are unreliable for pseudo
labeling, and we ignore them in the training.

L.j J
y 1, predi > Thos
Yy = 0,  predy) <Tyey @)
ignore otherwise

We implement this process by setting weights for the BCE (binary
cross entropy) loss, we set the weight of unreliable predictions to 0,
and the weight of positives and negatives to 1, as shown below.
whi = 1, predi’j > T;{os or pred;’j < T,{eg

neg .

0, otherwise

And the weighted BCE loss is shown as Eq.(4).

) =~y Tog(predi))+wily (1-yi/ ) log(1-predi?)) (9)
Based on this setting, we further investigate reasonable threshold

designs for multiple pseudo-label generation. We propose three
methods as follows.

Lj _
Wpos -

®)

3.2.1 Fixed threshold. We set fixed thresholds for each class, so
the positive and negative thresholds are denoted as T}{os = Tpos and

T,{eg = Tneg, J = 1,2,..., C, respectively.
3.2.2 Class-related threshold. We further consider the category
information in the threshold setting for the class-imbalanced data

distribution. Intuitively, the majority categories have a high classifi-
cation accuracy while the actions belonging to minority categories
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are difficult to recognize, due to the insufficient feature learning.
Setting a fixed high threshold for all classes is not optimal, since it
will produce fewer positives of minority categories and thus exac-
erbate the imbalance issue. Therefore, we set the positive threshold
for each class according to the class imbalance ratio 77, = nJ,/nl,
which ranges between 0 to 1. And we use a non-linear mapping
function M(+) on the imbalance ratio. M(r;,) also ranges between 0
to 1 and then will be leveraged to scale the positive threshold 705,

as shown in Eq.(5). And for the negatives, we set T,{eg = 0.1 for all
categories.

Tos = M(13) - Tpos 6)

3.2.3 Learnable threshold. To dynamically adjust the threshold
Tjgos .
We set the weight for BCE loss as a function related to T;os, so

that T;{os can be updated in each training iteration, and the T;{os is
initialized with the value calculated by Eq.(5). We design a sigmoid
function for the weight, as shown in Eq.(18).

1

N 1+ exp(—a(predi’j - Tgos))

during the training process, we set as a learnable parameter.

ij
Woos

(6)

Besides, a regularization term is added to the classification loss to
prevent the value of T}{OS from being too large, as shown in Eq.(19).
The details of the regularization term are listed in the supplemen-
tary material.

+ 2T/

Lj _ J
" = =logTyos pos

™)

3.3 Unlabeled class balancing

Multi-label action detection on both labeled and unlabeled data
suffers from severe class imbalance issue as shown in Fig.3, which
makes the prediction of the model biased towards the majority
classes. The common solution is to adopt a class balancing strategy
in multi-label scenario, such as [15, 40]. They firstly perform class
balanced data re-sampling and then use re-balanced weighting to
alleviate the class imbalance caused by multi-label co-occurrence.
However, it is inappropriate to perform data re-sampling with un-
labeled data as mentioned in Sec.3.1.

We propose the unlabeled class balancing strategy for semi-
supervised multi-label action detection. Different from the usual
data re-sampling strategy, we first sample action instances dynami-
cally according to their pseudo labels in each training iteration on
the unlabeled data. And then we alleviate the imbalance caused by
multi-label co-occurrence via re-weighting. To perform balanced
sampling for each class, we expect to sample the same number of ac-

c .
tion instances for each category, which is denoted as 1, = % > n.
=

Then, we select action instances assigned as class j with probability
p/ during each training iteration by using mask, where the mask for
the i-th action instance m! € {0, 1} follows a Bernoulli distribution
with probability p/, as shown in Eq.(8).

mt ~ Bernoulli(l,pj),i € {1,..,Ngc:} (8)

To balance the class distribution of action instances, we design the

function of probability p/ as shown in Eq.(9), we under-sample
the majority classes and sample as many action instances in the
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minority classes as possible. And it is worth noting that, the sample
probability of some minority classes is set to 1, since over-sampling
is not used for the unlabeled data.

pj={(

To perform the sampling method mentioned above, we need to
assign action instance to a specific class according to their multiple
pseudo labels generated in Sec.3.2. The class with the minimum

A B =
Z—Z), ny, >ny, >0

1,

©)

otherwise

1), among the positive multiple pseudo labels will be treated as
the class of the action instance, which is formulated as Eq.(10). In
the multi-label scenario, one action instance is usually associated
with majority and minority classes simultaneously, and this design
will assign the action instance to the minority class. Thus we can
sample the action instance with higher probability, which increases
the number of minority classes in the training process.

k =argmin(n), ] = {jlyy =1.j=1,...C} (10)
Jjel

However, this strategy will inevitably affect the sample numbers
of the other classes due to multi-label co-occurrence when classi-
fying one action instance into a specific category. Therefore, the
class imbalance issue is not completely eliminated after sampling,
as show in Fig.3, and a re-weighting procedure is needed. Based
on the unlabeled sampling strategy mentioned above, the number
of instances containing class j to be sampled during training is
g n{;’kpk, where n{;’k denotes the number of action instances con-
k=1

. . . . i,k
taining class j but assigned as class k. According to Eq.(10), n};~ = 0

; g — S ink
when j < kandny’ =n;, — 3 n
k=j+1
number of action instances containing both class j and k. Then
the numbers of sampled action instances containing class j can be

formulated as Eq.(11).

, where n’ nk denotes the

C
j i ink , k i
sh=mpl+ Y nl(pF - p)) (1)
k=j+1
) C jnk X
;P X et -p))
is =j+1 u
gu=== - (12)
"ty 1y /A
€S

The gap coefficient between the actual instance-level sampling num-
bers and our class-balanced expectation can be denote as Eq.(12).
The balanced weight is formulated as Eq.(13), which is used for
calculating unsupervised loss as shown in Sec.3.4. And if we set
hyper parameters f = 1 and y = 1, the whole pipeline based on
unlabeled balancing strategy could be approximately considered as
class-balanced. _ )

wy = (gi) 7" (13)
It is worth noting that obtaining the actual class distribution #,, for
the unlabeled data requires an inference process, which will incur
additional cost and the generated distribution may be inaccurate.
We assume that pseudo labels generated from unlabeled data and
ground truth labels from labeled data have similar distributions, as
shown in Fig.3. Based on this assumption, we use #; instead of 1,
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Algorithm 1 Pipeline of our method

Input: Labeled video action clips X; and unlabeled video action
clips X,.
/] Pre-process for unlabeled class balancing
1: for j=1toCdo
2: Calculate gap coefficient gi on Eq.(11)-(12)
3 Generate the class balanced weight wé via Eq.(13)

// Training
4: while not reach the maximum iteration do
5: Get predictions: predﬁ,pred;‘ ,pred¥ via Eq.(1)
// Multiple pseudo labeling
6: Set thresholds Tpos, Tneg
7: Get multiple pseudo labels y,,
8: Calculate weights wpos on Eq.(18)
// Unlabeled class balancing
9: Get sample mask m on Eq.(8)
10: Select action instances from predy with mask m
11:
12:

Re-weight the BCE loss according to wé
Compute the loss Ly,Lg and L; ;4 via Eq.(14)-(17)

13: return Model’s parameter

and the effect of this substitution can be ignored, which is demon-
strated in supplementary material. Then the gap coefficient can
be calculated by analyzing the labeled data distribution efficiently
before the training process as shown in Algorithm 1, and a similar
substitution setting will also apply to Tpos in Sec.3.2.2.

3.4 Loss function

Following [2, 3, 33, 46], our total loss consists of supervised and
unsupervised losses. The unsupervised loss for the i-th action in-
stance and j-th class is a combination of the weighted BCE loss and
the regularization term in Sec.3.2, as shown in Eq.(14). And the 44
represents the weight for the regularization term.

L =0 s (14)
Based on the unlabeled class balancing strategy, we mask the action
instances and re-weight the unsupervised loss in class-level. The
formulation of unsupervised loss is shown as bellow.

1 Nact C .
J L]
miZw L,
Nactc i1 =1 g

i=

Ly = (15)

For the supervised loss, we also perform the unlabeled class
balancing strategy in Sec.3.3 on the labeled data by using ground
truth labels instead of the pseudo labels. The supervised loss can be
formulated as in Eq.(16), where BCE loss is leveraged to calculate
classification loss for the student prediction on labeled action clips.

C

J ij ij
= m; » wy,BCE(pred,’,y;”’)
NaCtC Z ! ]Z:; g p ! yl

i=1
Then the final training objective can be formalized as combination
of both supervised and unsupervised loss, which is formulated as:

17)

Nact

(16)

S

Liotal = Ls + ALy
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Figure 3: The class distribution of action instances, which is generated from 10k video clips randomly sampled from both
the labeled and unlabeled dataset. The class imbalance issue exists in both labeled and unlabeled videos. The pseudo labels
generated from unlabeled data exhibit a more imbalanced distribution. The mask sampling in Sec.3.3 can alleviate the imbalance
issue, but cannot eliminate it due to the effect of multi-label co-occurrence.

where L and L;, represent supervised loss and unsupervised loss
applied on labeled and unlabeled action clips respectively. And the
overall pipeline of our semi-supervised learning approach is shown
in Algorithm 1.

4 EXPERIMENTS

4.1 Datasets

4.1.1 AVA. AVA [14] is a labeled dataset of spatio-temporally local-
izing atomic visual actions, containing 430 15-minute videos. For
AVA, the action instances in videos are annotated with bounding
boxes and their corresponding multiple action labels. And the an-
notations are provided on key frames which are sparsely sampled
at 1 FPS. We use both v2.1 and v2.2 of AVA in comparison to the
state-of-the-art methods and v2.2 for ablation study. Following the
official guidelines, we evaluate 60 action classes with frame-level
mAP as the metric, and the IoU threshold is 0.5.

4.1.2 UCF101-24. UCF101-24 is alabeled dataset for spatio-temporal
video action detection, which contains spatio-temporal annotations
on 3,207 videos for 24 action classes. Following the common settings
of previous methods [18, 20, 21, 29, 44], we perform experiments on
the first split of UCF101-24 and use frame-mAP@0.5 as the metric
for evaluation.

4.1.3  Unlabeled dataset. We notice that in the AVA training set,
the ground truth action labels and bounding boxes are provided
every 1 second on the key frames. It means that only the key frames
are annotated with action labels, the rest frames remain unlabeled.
We collect the unlabeled frames without action labels and spatio-
temporal annotations from AVA and treat them as key frames. Cen-
tering on these unlabeled key frames, we can obtain unlabeled
video clips that constitute our unlabeled dataset. The number of
video clips in the unlabeled dataset is 184k. And the ratio compared
to the entire labeled AVA dataset is approximately 1:1.
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4.2 Implementation details

4.2.1 Person detector. For the labeled video clips on AVA, we lever-
age the predicted human detection boxes from [38] for the per-
son detection on key frames, following the routine setting [29,
35, 39]. The person detection model is Faster R-CNN [30] with a
ResNeXt-101-FPN backbone pre-trained on ImageNet [11], COCO
[27] dataset, and finetuned on the AVA dataset. And for the UCF101-
24 dataset, we adopt the person detector designed in [20], which is
pretrained on COCO dataset and finetuned on UCF101-24 dataset.
For the unlabeled video clips, we leverage the above person detec-
tors to get the detection bounding boxes of the action instances.

4.2.2 Network Structure. For semi-supervised learning on AVA
dataset, we use SlowFast[12] and ACAR [29] as our baseline model
to verify the effectiveness of our method. Following [29], we use
SlowFast R50 8 x 8 instantiation and increase the spatial resolution
of res5 by 2x. For the ACAR, we instantiate the ACARR50 8 x 8
without actor feature bank. The backbone for both SlowFast and
ACAR is pre-trained on the Kinetics-400 [7] dataset. For UCF101-24
dataset, we use SlowFast as our baseline model and set the temporal
sampling for the slow pathway to 8 x 4 and the input for the fast
pathway is 32 consecutive frames, following [29].

4.2.3 Training and Inference. We first train the baseline model on
the labeled AVA dataset, and the training setups follow the original
papers. Then for semi-supervised training , we train the network
for 35k iterations employing the SGD with an initial learning rate of
0.0064, momentum 0.9 and weight decay 10~ respectively. Also, we
use the onecycle [32] learning procedure to schedule the learning
rate. We perform an exponential moving average with the momen-
tum of 0.999. We set the batchsize for labeled data as 16, and the
ratio of unlabeled data to labeled data is set as 1:1. We use horizontal
flip for the weak augmentation. And for the strong augmentation
performed on video clips, we extend the RandAugment [9] in the
temporal dimension in our experiments. We set the unsupervised
weight A = 0.3 and regularization weight A; = 1.0 for calculating
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the total loss in Eq.(14)-(17). We perform multiple pseudo labeling
by using learnable class-related threshold mentioned in Sec.3.2, and
set the hyper parameter a = 20 and 705 = 0.9. We leverage the
unlabeled class balancing strategy in Sec.3.3 on both the labeled
and unlabeled training data, setting the f = 0.9 and y = 0.05. And
we use 1 instead of n, for calculating the balanced weights before
training iteration. For inference on AVA, we scale the shorter side
of input frames to 256 pixels and use detected person boxes with
scores greater than 0.85 for final action classification following the
common setting in [12, 29, 35, 38, 39]. The training and inference
details for UCF101-24 dataset are listed in supplementary material.

4.3 Comparison with Existing methods

To demonstrate the effectiveness of our design, we compare the pro-
posed method with other representative semi-supervised methods,
both training with 100% labeled data and unlabeled data. Com-
prehensive experiments of all methods have been conducted on
AVA and UCF101-24 datasets, and the implemetation details for
Pseudo-label [23], Noisy student [42] and Fixmatch [33] can be
found in the supplementary material. As shown in Table 1, our
method outperforms all other existing methods by a considerable
improvement, lifting the best mAP@0.5 from 25.4% to 26.4% and
from 81.9% to 82.8% on AVA v2.2 and UCF101-24, respectively. This
results substantiate the superiority of our proposed method.

We also conduct experiments on AVA v2.2 to validate the effec-
tiveness of our methods when training with limited labeled data,
and the results are shown in Table 2. Our method outperforms the
fully-supervised baseline (Our implementation of SlowFast R50)
and other semi-supervised methods in the case of different labeled
data ratios. With 50% labeled data, our method can still outperform
the fully-supervised baseline trained with the whole labeled data.

Table 1: Comparison to other representative semi-supervised
methods on AVA and UCF101-24 datasets, measured by frame-
mAP@0.5.

Method AVA v2.1 AVAv2.2 UCF101-24
Baseline 24.8 25.2 81.6
Pseudo-label [23] 23.4 23.9 78.8
Noisy student [42] 24.5 24.7 81.7
Fixmatch [33] 24.9 25.4 81.9
Ours 26.1 26.4 82.8

Table 2: Comparison to the semi-supervised methods on AVA
v2.2 when training with different ratio of labeled data.

Method Ratio of labeled data
5% 10% 25% 50% 100%
Baseline 19.0 21.2 233 249 252
Pseudo-label [23] 18.7 209 221 23.6 239
Noisy student [42] | 19.1 21.1 229 243 247
Fixmatch [33] 193 209 23.2 248 254
Ours 19.6 219 238 259 264

To compare our method with the existing fully-supervised meth-
ods, we use 100% labeled and unlabeled data to train our framework.
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Note that for the sake of fairness, we compare our method with fully-
supervised methods pre-trained on Kinetics-400 without long-term
feature/memory bank [29, 35, 38]. As shown in Table 3 and Table 4,
respectively, our method achieves the state-of-the-art performance
in video action detection on both AVA and UCF101-24 dataset. Our
method improves the performance over different fully-supervised
baselines and validates the benefits of leveraging unlabeled data.

Besides, Fig. 4 shows the mAP increment of our method with
respect to the fully-supervised baseline on all categories. We can see
that our semi-supervised method gives more performance boosts
on the minority classes, which is consistent with our insight to
balance the long-tailed data distribution.

Table 3: Comparison to the sota fully-supervised methods
on AVA dataset. FB means the long-term feature bank.

model backbone AVA | val mAP
VAT [13] 3D v21 | 250
C-RCNN w/o FB [39] Res50 v2.1 25.3
SlowFast [12] Res50 v2.1 24.2
WOO (8] SlowFast R50 | v2.1 25.2
Ours + SlowFast SlowFast R50 | v2.1 26.1
SlowFast [12] Res50 v2.2 24.9
WOO [8] SlowFast R50 | v2.2 25.4
ACAR w/o FB [29] SlowFast R50 | v2.2 27.8
Ours + SlowFast SlowFast R50 | v2.2 26.4
Ours + ACAR w/o FB | SlowFast R50 | v2.2 28.2

Table 4: Comparison to the fully-supervised methods on
UCF101-24 dataset.

Method Inputs val mAP
T-CNN [16] RGB 67.3
STEP [44] RGB+FLOW |  75.0
S3D-G [43] RGB+FLOW 78.8
YOWO [20] RGB 80.4
MOC [25] RGB+FLOW |  73.1
Baseline (SlowFast R50) RGB 81.6
Ours RGB 82.8

4.4 Ablation Study

4.4.1 Effectiveness of components. To verify the impact of different
components in our semi-supervised learning method, experiments
are performed as shown in Table 5, where MPL stands for Mul-
tiple pseudo labeling and UCB for Unlabeled class balancing. For
the semi-supervised learning without MPL and UCB, we set fixed
thresholds Tpos = 0.5 and Teq = 0.1 for generating multiple pseudo
labels. The results in Table 5 illustrate the effectiveness of the two
modules and also show that semi-supervised learning method will
get a worse performance (24.9%) than the fully-supervised baseline
(25.2%) without MPL and UCB. Furthermore, comparing the train-
ing results on 5% and 100% labeled data, we can find different effects
of MPL and UCB on the performance improvement. Unlike the case
of 5% data, the improvement of UCB is more than that of MPL in
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Figure 4: Gains of mAP for each class on the AVA dataset
with respect to the baseline.
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the case of 100% labeled data. Because the model is well-trained
on 100% labeled data and overfits towards the majority classes,
leading to serious class imbalance issue, which can be effectively
alleviated by the UCB. This validates that the imbalanced class dis-
tribution of training data is a major factor limiting the performance
of semi-supervised learning on multi-label video action detection.

Table 5: Effectiveness of components on AVA dataset. MPL:
Multiple pseudo labeling. UCB: Unlabeled class balancing.

Ratio of labeled data
MPL UCB =7 100%
19.02 24.93
v 19.21 25.71
v 19.19 26.22
v v 19.56 26.43

4.4.2  Effectiveness of multiple pseudo labeling. For the ablation
study on multiple pseudo labeling, we perform experiments on
AVA dataset with both 5% and 100% labeled data. For the fixed
threshold strategy, we fix the positive threshold Tpos = 0.5 and
negative threshold Tjeq = 0.1. And for the class-related threshold
strategy, we set parameter 705 = 0.9 and the negative threshold
Theg = 0.1. For the mapping function in Sec.3.2, we set a concave
function M(x) = x*! to map the imbalance ratio to get the pos-
itive threshold for each class. We initialize the thresholds in the
learnable threshold strategy with the thresholds calculated by the
class-related method and we set the parameter a = 20 and 4; = 1
in the experiments. The ablation study details for mapping func-
tion and learnable strategy are listed in supplementary material.
We use baseline with UCB and compare the performance of differ-
ent multiple pseudo labeling strategies, and the results are shown
in Table 6. The results show that class-related threshold strategy
outperforms the method that set fixed positive threshold to gen-
erate multiple pseudo labels for all categories, and the advantage
of class-related threshold is more obvious with limited training
annotations. This is because setting a fixed threshold for all classes
will generate more positive pseudo labels for the majority classes,
which makes the imbalance issue severe and weakens the feature
learning for the minority classes. Furthermore, compared with the
class-related threshold strategy, the learnable threshold strategy im-
proves the performance by setting the learnable thresholds, which
can be dynamically adjusted during the training iteration.

2131

Hongcheng Zhang, Xu Zhao, and Dongqi Wang

Table 6: Ablation study on threshold strategy in multiple
pseudo labeling.

Ratio of labeled data
Method
5% 100%
Fixed threshold 19.19 26.22
Class-related threshold | 19.44 26.37
Learnable threshold 19.56 26.43
26.50 26.60
26.40 2640
26.30 22620 h
Ed Ed
£ 26.20 EZE.DU
26.10 25.80
26.00 25.60
0.80 0.85 0.90 0.95 1.00 0.00 0.05 0.10 0.15 0.20
Parameter B Parameter y

(a) Parameter (b) Parameter y

Figure 5: Ablation study for hyper parameters in unlabeled
class balancing.

4.4.3  Effectiveness of unlabeled class balancing. We conducted ex-
periments with 100% labeled data to determine hyper parameters
in unlabeled class balancing. We first explore the sampling rate
parameter § in Eq.(9). We use baseline with MPL for training and
set the parameter y to 0, which is equivalent to not performing
subsequent re-weighting operation. According to the results shown
in Fig.5(a), we set the f as 0.9 and perform the experiments for
parameter y. The results are shown in Fig.5(b). The experimental
results show that setting a lower sample rate is not always better
for the majority classes. Because the mask sampling will omit a
number of valuable instances, and thus weakens the model’s feature
learning capacity on the majority classes. In addition, the results in
Fig.5(b) show that over weighting the minority classes also reduces
the performance of the model.

5 CONCLUSION

In this paper, we propose a novel semi-supervised learning method
for multi-label video action detection. This is the first work to
perform semi-supervised learning for video action detection in
multi-label scenario. We point out the two major challenges in this
task: generation of multiple pseudo labels and class-imbalanced
data distribution. First, we design an effective multiple pseudo-
label generation method by setting dynamic learnable thresholds
according to the class distributions. Besides, to alleviate the im-
balance between different classes, we propose the unlabeled class
balancing, which selects training samples dynamically according
to their pseudo labels during the training phase and then performs
re-weighting to balance the effect of multi-label co-occurrence. Ex-
tensive experiments conducted on AVA and UCF101-24 datasets
demonstrate the effectiveness of our proposed method.
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A ABLATION STUDY ON MULTIPLE PSEUDO
LABELING

A.1 Class-related threshold

Inspired by [46], We explore three different mapping functions for
getting class-related threshold in Table 7: (1) concave: M(x) = x%1,
(2) linear: M(x) = x, and (3) convex: M(x) = x/(2 — x). We set
the parameter 7,05 = 0.8 for the experiment. And we see that
the concave function shows the best performance and the linear

function shows the worst.

Table 7: Ablation study on mapping function.

Mapping function mAP

Concave 26.30
Linear 25.73
Convex 25.89

We also conduct experiments on the positive threshold in class-
related threshold strategy, as shown in Fig.6. The optimal choice of
positive threshold 7,0 is around 0.9, either increasing or decreasing
this value will lead to a performance decay. Beside, we also try to
set class-related thresholds for Tpeq, but the experimental results
are worse than setting Teq = 0.1 for all classes.

A.2 Learnable threshold

We design a sigmoid function for the positive weight, where i =
1,2,..,Nget and j = 1,2, ...,C, as shown in Eq.(18).
1+ exp(—a(predt - Tpos))

(18)

The function curves are shown in Fig.7, where T;{os is set to 0.5.
The parameter a determines the shape of the function, and it will
be steeper when setting a larger a. For example, when a = 20,
Tpos = 05 h
weight w;,’és will grow from around 0 to 1 with pred;’J growing
from around 0.3 to 0.7. According to the experimental results in
Fig.8(a), we set a = 20.

= 0.5, for the j-th class of the i-th action instance, the positive

26.40
26.35
26.30

26.25

mAP

26.20
26.15

26.10

0.80 0.85 0.90

Parameter T,

Figure 6: Ablation study on parameter 7,,s.

The regularization term is used for preventing the value of T;{os
from being too large, as shown in Eq.(19). The regularization term

will achieve the minimum value when TJ,; = 0.5. And it will
become larger when T;fos approaches 0 or 1, thus making the value

of T/

pos Teasonable.

Iy = ~log T, + 2T},

[

(19)
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To explore the weight A; of regularization term, we conduct
experiment as shown in Fig.8(b). We can see that it is optimal when
A1 = 1. When a larger 1, is set, regularization term will tend to make

J
Tpos X
setting a smaller A4, TI{

= 0.5, approaching the fixed threshold strategy. And when

s tends to a larger value during the training,
which is not conducive to the feature learning of the model.

0.8
0.6
—
38
= 04
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Figure 7: Curve of w,;,; when setting different a, T, = 0.5.

B ABLATION STUDY ON UNLABELED CLASS
BALANCING

B.1 Data Imbalanced ratio

We assume that pseudo labels generated from unlabeled data and
ground truth labels from labeled data have similar distributions.
Based on this assumption, we use imbalanced ratio of labeled data
n; instead of 1y, and the effect of this substitution can be ignored,
which is demonstrated in Table 8.

Table 8: Experimental results using labeled and unlabeled
imbalanced ratio.

Method mAP
Using unlabeled distribution ,,  26.37
Using labeled distribution ; 26.43

B.2 Pseudo-label Based Class Balancing

The labeled class balanced methods will encounter difficulties when
performing data re-sampling with unlabeled data. Since data re-
sampling requires the class information for all unlabeled data before
training, an additional inference process is required to generate the
corresponding pseudo labels for the unlabeled data. We call this
method “pseudo-label based class balancing”. And the experimental
results on AVA v2.2 are shown in Table 9

C EXPERIMENT ON THE WEIGHT OF
UNSUPERVISED LOSS

We perform experiments on the weight for the unsupervised loss,
as shown in Fig.9. And we set A = 0.3 according to the results.
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Table 9: Experimental results using Pseudo-label Based Class
Balancing and Unlabeled Class Balancing,.

Method mAP
Pseudo-label Based Class Balancing  26.02
Unlabeled Class Balancing 26.43
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Figure 8: Ablation study for hyper parameters in learnable
threshold.

D TRAINING AND INFERENCE DETAILS ON
UCF101-24

On the UCF101-24 dataset, we firstly train the baseline model follow-
ing the training setups in [29]. Then for semi-supervised training,
we train the whole framework end-to-end for 5.4k iterations with a
base learning rate of 0.0008 and use the onecycle learning procedure
to schedule the learning rate. We use all boxes generated by the
person detector for inference. Other hyperparameter settings for
semi-supervised learning are similar to experiments on AVA.

E IMPLEMENTATION DETAILS OF OTHER
SEMI-SUPERVISED METHODS

We adopt several representative semi-supervised methods for com-
parison with our method. We implement Pseudo-label [23], Noisy
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Student [42] and Fixmatch [33] on the multi-label video action
detection task. The implementation details are as follows.
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Figure 9: Ablation study on the weight 1 of unsupervised
loss.

E.1 Pseudo-label

Based on the pipeline of our method, we perform weak augmen-
tation on both the labeled and unlabeled input clip, and we do
not update the teacher model during the training, following [23].
We train the model without the UCB (unlabeled class balancing)
and leverage fixed threshold strategy for MPL (multiple pseudo
labeling).

E.2 Noisy student

For Noisy student, we leverage the same augmentation function
as our semi-supervised method. And following [42], we preform
the iterative training twice. The other settings are the same as the
Pseudo-label method in Sec.E.1.

E.3 Fixmatch

For Fixmatch, we update the teacher model’s parameter in the same
way as our method. When training the network, we do not use
UCB and the iterative training strategy, and set a fixed threshold
for MPL
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